Final Overview & Results The DeskBot system was setup up on an experimental desk testbed. The Intel Real sense camera was mounted directly above the center of the table at a distance of 30 inches. The right corner of the table is the robots initial resting location. Three major modules were used as explained in the updates previously, Scene Segmentation and Object Detection Robot Path Planning and Object Manipulation Coverage Path Planning The results pertaining to each of these modules are detailed below, Scene Segmentation and Object Detection To help the DeskBot system perceive and observe its environment YOLO object detector was implemented to classify 5 classes (pencil, erasers/rubbers, pens, staplers, remotes). YOLO was successfully implemented with an accuracy of 90%. A dataset was also created an annotated for the same calss of objects for training. As a future work more desk/workspace objects could be trained to be seamlessly declu...